Towards Wireless Environment Cognizance Through Incremental Learning

Aniqua Baset, Christopher Becker, Kurt Derr, Samuel Ramirez, Sneha Kasera, and Aditya Bhaskara

Increasing use of wireless devices in modern infrastructures

Interferences, malfunctions, ... Downtime, safety hazards, ...

Increasing use of wireless devices in modern infrastructures

Need for situational awareness, cognizance of wireless environment

Interferences, malfunctions, ... Downtime, safety hazards, ...

Our work

Our work

Classify known/expected signals

Oetect new/unknown signals

Our work

Classify known/expected signals

Oetect new/unknown signals

V Incremental learning

- adapt to dynamic environments
- learn deviations in deployed environment

Our system overview

Our system overview

RF measurement Known Signal Classification + Unknown Signal Detection

Signal class/ Unknown

 \checkmark Clustering & Learning \rightarrow incremental learning

Example scenario

Example scenario

Module I : Known Signal Classification + Unknown Signal Detection (KSC+USD)

Challenge 1: Multi-class classification not enough

$$U_1 \longrightarrow \begin{array}{c} \text{Multi-class} \\ \text{Classifier} \\ & & \\ &$$

Challenge 1: Multi-class classification not enough

Challenge 1: Multi-class classification not enough

Easily extensible to new signal classes

Challenge 2: Unknown signal or just noise?

Module I: KSC+USD Challenge 2: *Unknown* signal or just noise?

Challenge 3: How to keep up with high sample rate?

Module I: KSC+USD Challenge 3: How to keep up with high sample rate?

Module I: KSC+USD Methodology for Signal/Noise Classifier

Module I: KSC+USD Methodology for Signal/Noise Classifier

Module I: KSC+USD Methodology for Signal/Noise Classifier

Module I: KSC+USD Methodology for Novelty Detector

Module I: KSC+USD Methodology for Novelty Detector

Module I: KSC+USD Methodology for Novelty Detector

Online

Module II: Clustering Workflow of offline module

Module II: Clustering Workflow of offline module

Greatly reduce # of data points to cluster

Challenge 1: Different channels but same signal class should be in same cluster

Challenge 1: Different channels but same signal class should be in same cluster

m-SCF shift-invariant

Challenge 2: # unknown clusters

Module II: Clustering Challenge 2: # unknown clusters

HIER-CLUST: our custom divisive hierarchical clustering algorithm

If dividing improves situation, i.e., $v_c \ll v_p$

Module III: Learning

Dataset for known signal or found cluster, *s*_i

Module III: Learning

Implementation

KSC+USD module

• Standalone C++ application

Clustering module

• Multiple Python scripts for offline version

Learning module

- Multiple Python scripts
- CNN & Autoencoder: keras with Tensorflow backend

Module I: KSC+USD Evaluating real-time performance

Evaluation Setup

C++ application of KSC+USD module

4-core 64-bit Intel i7-4810MQ 2.8GHz processor, 32GB RAM

Results

- No overflow in X310 in 2 hours run
- One prediction: ~4.6ms

Module I: KSC+USD SNR vs. Signal/Noise Classifier accuracy

Groups 1-3: RADIOML 2018.01 dataset from DEEPSIG Group 4: Our custom dataset with over-the-air (OTA) recordings

Module I: KSC+USD SNR vs. Novelty Detector accuracy

Module I: KSC+USD Novelty Detector accuracy for different signals

Module II: Clustering HIER-CLUST performance for class imbalanced dataset

Ratio of # of data points in largest to smallest class		20	10	5
# of classes		5	2	4
HIER-CLUST	# of clusters found	8	2	5
	Normalized Mutual Information (NMI)	0.9609	1.0	0.9298

Labeled signal data from OTA recording in 2.4GHz band

Normalized Mutual Information (NMI) $0 \le NMI \le 1$, values close to 1 indicate good clustering

Module II: Clustering HIER-CLUST performance for different environment dataset

Frequency band		5.6 GHz	2.4GHz in anechoic chamber	
Device type		IEEE802.11p	Bluetooth	
# of expected signal classes		1	1	
HIER-CLUST	# of clusters found	2	3	
	Cluster details	Cluster 1: IEEE802.11p Cluster 2: noise from some wide-band signal	Cluster 1: Bluetooth Clusters 2, 3: Bluetooth mixed with DC offset spikes at center frequency	

Evaluating incremental learning capability

Novelty Detector from labeled data vs clustering

Summary

Wireless-environment Cognizance System

 Adaptive & robust against changes in deployed environment, hardware, computing resources

Thorough evaluation for several OTA scenarios

Aniqua Baset, aniqua@cs.utah.edu